Please check the examination details belo	ow before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Nu	
Pearson Edexcel Inter	national GCSE
Friday 26 May 2023	
Afternoon (Time: 2 hours)	Paper reference 4PM1/01R
Further Pure Mati	hematics
Calculators may be used.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle *ABC*: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1

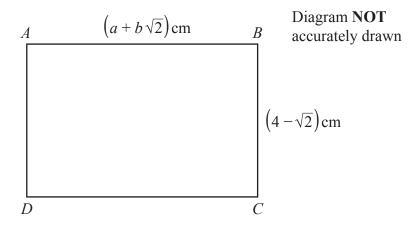


Figure 1

Figure 1 shows the rectangle *ABCD*.

$$AD = BC = (4 - \sqrt{2})$$
 cm and $AB = DC = (a + b\sqrt{2})$ cm where a and b are integers.

The area of the rectangle is $\left(10 + \sqrt{2}\right) \text{cm}^2$

Find the value of *a* and the value of *b* Show your working clearly.

1	Z		L
٧.		1	
_			

(Total for Question 1 is 4 m	ıarks)

2 One solution to the following simultaneous equations

$$y = px + 9$$
$$6x^2 - xy = 5$$

is $\left(-\frac{1}{2}, q\right)$, where p is an integer and q is a prime number.

(a) Find the value of p and the value of q

(4)

(b) Hence find the other solution to the equations.

(4)

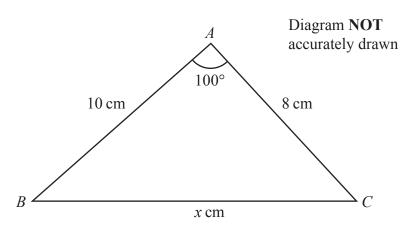


Figure 2

Figure 2 shows triangle ABC where

$$AB = 10 \text{ cm}$$
, $AC = 8 \text{ cm}$, $BC = x \text{ cm}$ and $\angle BAC = 100^{\circ}$

(a) Find, to 3 significant figures, the value of x

(2)

- (b) Find, in degrees to one decimal place, the size of
 - (i) angle ABC
- (ii) angle ACB

(3)

The bisector of angle ABC meets AC at the point M

(c) Find the area, in cm² to 3 significant figures, of triangle *BMC*.

(4)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | | |
|
 |
|
 |
|
 |
|
 |
|
 |

4 (a) Complete the table of values for $y = \frac{x}{2} + 6e^{-2x} + 1$ giving your answers to one decimal place.

x	0	1	1.5	2	3	4	5	6
y	7		2.0			3.0		4.0

(2)

(b) On the grid opposite, draw the graph of $y = \frac{x}{2} + 6e^{-2x} + 1$ for $0 \le x \le 6$

(2)

(c) By drawing a suitable straight line on your graph, obtain estimates, to one decimal place, of the roots of the equation

$$2x + \ln\left(24 - 5x\right) = \ln 36$$

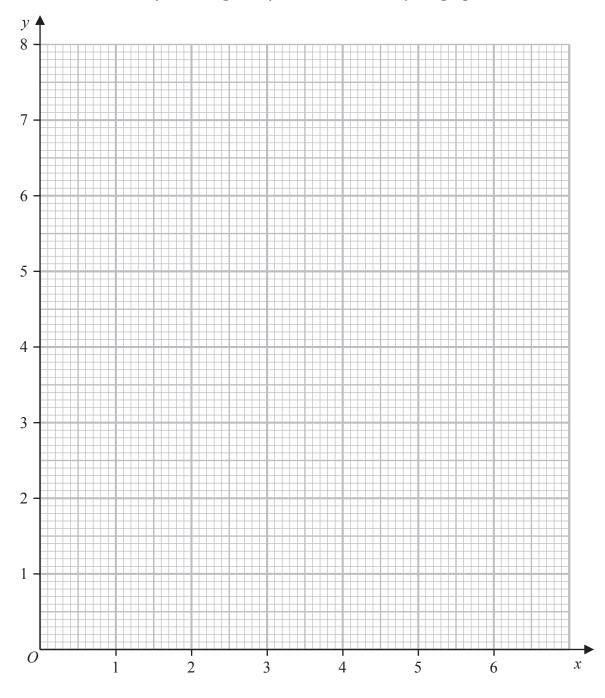
(5)

Question 4 continued y Turn over for a spare grid if you need to redraw your graph.

Question 4 continued	

Question 4 continued

Only use this grid if you need to redraw your graph.



(Total for Question 4 is 9 marks)

5 $f(x) = 2x^3 + ax^2 - 14x + b$ where a and b are constants.

When f(x) is divided by (x-4) the remainder is 39

Given that (x-1) is a factor of f(x)

(a) show that a = -3 and find the value of b

(5)

(b) Hence factorise f(x) completely.

(4)

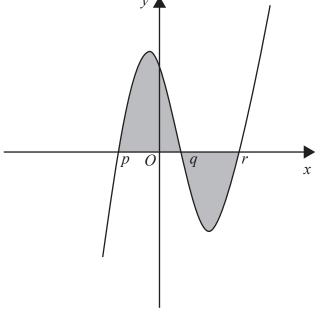


Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows part of the curve C with equation y = f(x)

Given that C crosses the x-axis at the points with coordinates (p, 0), (q, 0) and (r, 0)

(c) write down the value of p, the value of q and the value of r

(3)

The region shown shaded in Figure 3 is bounded by the curve and the *x*-axis.

(d) Use algebraic integration to find the exact area of the shaded region.

(4)

Question 5 continued	

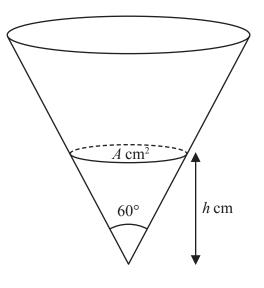


Diagram **NOT** accurately drawn

Figure 4

Figure 4 shows a container in the shape of a right circular cone.

The container is fixed with its axis of symmetry vertical.

The vertical angle of the container is 60° as shown in the diagram.

At time t seconds, t > 0, the height of oil in the container is h cm and the volume of oil in the container is $V \text{ cm}^3$

(a) Show that
$$V = \frac{1}{9}\pi h^3$$

(3)

At time t seconds the surface area of oil in the container is $A \text{ cm}^2$, as shown in Figure 4 Oil is dripping out of the bottom of the container at a constant rate of 4 cm³/s.

(b) Find the exact rate of change, in cm^2/s , of the surface area of oil in the container when h = 24

1		1	
ſ	w	7.1	٨
	(

Question 6 continued	

7	The curve with equation $y = mx^2 + 64\sqrt{x} + 39$ has a stationary point with coordinates $(4, n)$ where m and n are integers. Using calculus	
	(a) find the value of m and the value of n	(6)
	(b) determine the nature of the stationary point.	(2)

8 The *n*th term of a geometric series G is U_n and the sum of the first n terms of G is S_n

Given that $U_n = \frac{25}{4} \left(\frac{3}{5}\right)^n$

(a) find the exact value of U_5

(1)

(b) Show that $S_n = \sum_{r=1}^n \frac{A}{B} \left(\frac{3}{5}\right)^{r-1}$ where A and B are integers to be found.

(3)

The sum to infinity of G is S

(c) Find the least value of n such that $S - S_n < 0.045$

(6)

Question 8 continued	

9 (a) Expand $(1 + 2x)^{-\frac{1}{3}}$ in ascending powers of x up to and including the term in x^3 expressing each coefficient as a fraction in its lowest terms.

(3)

(b) Find the range of values of x for which your expansion is valid.

(1)

$$f(x) = \frac{2 + kx^2}{(1 + 2x)^{\frac{1}{3}}}$$

(c) Obtain a series expansion of f(x) in ascending powers of x up to and including the term in x^3

Give your coefficients in terms of k where appropriate.

(3)

The coefficient of x^3 in the series expansion of f(x) is $-\frac{8}{3}$

(d) Find the exact value of k

(2)

(e) Hence, using algebraic integration, estimate the value of

$$\int_{0.1}^{0.2} f(x) dx$$

Give your answer to 4 decimal places.

(5)

Question 9 continued	

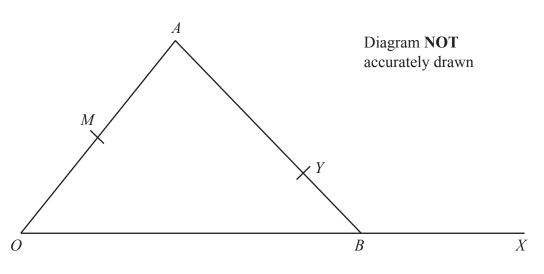


Figure 5

In Figure 5, $\overrightarrow{OA} = 2\mathbf{a}$, $\overrightarrow{OB} = 4\mathbf{b}$ and M is the midpoint of OA.

The point Y lies on AB such that AY : YB = 3 : 1

The point X lies on OB produced.

- (a) Find as simplified expressions in terms of **a** and **b**
 - (i) \overrightarrow{AB}
- $(ii) \overrightarrow{MY}$

(3)

The points M, Y and X are collinear.

(b) Find the ratio *OB* : *OX*

(5)

(c) Find the ratio of (Area $\triangle YBX$): (Area $\triangle OAX$)

(3)

Question 10 continued	
(Total for Question 10 is 11 marks)	_
TOTAL FOR BAREN IS 100 MARKS	-

TOTAL FOR PAPER IS 100 MARKS

